

UPDATES

1. Threads .v. hyperthreading
– Hyperthreading is physical: set by BIOS, whether the operating sees

2 (not 1) logical cores for each physical core.

– Threads: lightweight processes running. Typically put one thread per

CPU core.

– For x86, best to have HT turned off, and 1 thread per physical core.

– For GPU, different story. Threading is good and used to mask high

cost of memory access – the GPU cores are designed specifically to

cope with lots of threads

– For MIC, leave their HT turned on, and best performance may be 2 or

3 or 4 threads per physical core

OpenMP

Dr. Michael K. Bane

HIGH END COMPUTE

OPENMP IN PRACTICE

Quadrature

• Approximate integral is

sum of areas under line

• Each area approximated by a rectangle

• Can we calculate these in parallel?

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3 3.5

x y=x+h

0.5*[f(x)+f(y)]

Hands on

• Quad on Archer CPU

– (rather than KNL we saw earlier)

• Show serial

• OMP times for 1,2,4, …

– (login v batch)

– (ifort v ftn)

• An OpenMP thread runs on a processor core

OPENMP MAIN PRINCIPLES

Recap: fork-join, parallel regions,

team of threads

• Master thread – lives forever

• Worker threads – short lived, in a parallel

region

• Fork at start of a parallel region

– Creation of new threads

– Possible creation of new

memory locations

• Join at end of a parallel region

• Can have many parallel regions (with differing

number of threads in the team)

Threads & Regions

• More than 1 par region
– Could have differing number of threads in each

par region

• Also need to think efficiency
– Coarse grained usually best

– Set-up and close/sync costs

• Threads:
– Master #0

– Workers: 1, 2, …, ${OMP_NUM_THREADS}-1

0 1 2 3 4 5 6
This region has 7 threads.

omp_get_num_threads()

will return 7 from inside

par region

OPENMP SYNTAX

OpenMP

• We are not going to attempt to cover all the

syntax, nor the edge cases, nor all the gotchyas…

• Syntax of each & everything, with interpretation
http://openmp.org/wp/openmp-specifications/

• We will cover the key concepts (with examples),

focussed on FORTRAN

OpenMP: the three ingredients

• Directives

– Tell the compiler to create assembler for thread

creation (etc) and concerning work placement within

the team of threads

• Run time functions

– Allow running code to make run time decisions.

Typically how to distribute the work load based on

input data size and number of threads available

• Environment variables

– Control how a compiled code will run, eg set the

maximum number of threads

OpenMP Directives

!$OMP <directive> <clauses>

• <directive> is ~command

• <clauses> are ~how to implement command

– Typically on scope of data and control of thread &

work placement

• Comment to non-OpenMP compliant

compilers

• Interpreted by OpenMP compliant compilers

Syntax for Directives

!$OMP <directive> <clauses>

• No whitespace within "!$OMP"

• At least one space after the sentinel

• First string on a line

• Cannot mix OMP directives and other FORTRAN

• FORTRAN, so case insensitive

• Continuation
– Line to be continued: end with &

– Continuation line: start with either !$OMP or !$OMP&

Setting up a Parallel Region

• !$OMP PARALLEL <clauses>

… code

!$OMP END PARALLEL

• Code will be replicated

– Single source code but may be different paths and

different "evaluations"

!$OMP PARALLEL

start = workSize * omp_get_thread_num()

do j = start, workSize

y(j) = y(j) + func(x(j))

end do

!$OMP END PARALLEL

! At this point we will have updated

! elements 0,1,..,Z of Y

! where Z depends on the number of threads

Sharing the Work

• Once we have a parallel region

– Threads created

• Constructs to share work

– Divide the work over the threads

– Exist within a parallel region

• Common

– !$OMP DO (as per examples)

– !$OMP SECTIONS

– !$OMP WORKSHARE

Most common!

OMP DO

• distributes the iterations of the following DO

loop to threads

– doesn’t create a loop

– no need to write an extra FORTRAN loop re threads

• Remember that the code worked before adding

OpenMP do no need for extra loops – we are

just describing who does the work

• The "REDUCTION" is a data clause – see later

• We can optionally use NOWAIT clause at end:

!$OMP END DO NOWAIT

which removes a synchronisation and lets threads

continue with next statement without waiting for

every other statement (can be dangerous)

How much parallelism

• We can control the number of threads:

• Env var
export OMP_NUM_THREADS=12

• Directives
!$OMP PARALLEL num_threads(N)

• Run time library call

(effect varies where is called)
call omp_set_num_threads(N)

• Use N threads for the parallel region

(best to have N<=$OMP_NUM_THREADS)

Replication .v.

Work Sharing

• OMP PARALLEL: creates threads

• OMP DO: divides up the work

• So on N threads that part

(should) go N times quicker

Replication .v.

Work Sharing

• OMP PARALLEL creates threads

• Everything in the parallel region is

done by every thread

• So if no extra directive

to split up the work

• Then all N threads do everything so

might only go 1 times quicker

Or alternative (programmable) method

UNLIMITED PARALLELISM

The sky is the limit?

init()

for timesteps {

update_my_cell()

update_globals()

output_current_state()

}

fini()

1 core 2 cores 5 cores 500 cores

Time for SEQ

/seconds

120

Time for PAR /

seconds

500 250 100 1

1 core 2 cores 5 cores 500 cores

Total /seconds 620 370 220 121

1 core 2 cores 5 cores 500 cores

Speed-up 1 1.67 2.81 5.12

Speed up: How much faster on p cores than on 1 core: Sp = T1/Tp

Efficiency: How close to ideal speed-up on p cores: Ep = Sp/p

Amdahl's Law

• Alpha : serial proportion of original code

• Tp = alpha*T1 + (1-alpha)*T1/p

• Sp = T1/Tp

• Thus Sp = 1 / (alpha + (1-alpha)/p)

• Speed-up (and max speed-up) only dependent

on the proportion of code that is serial

• Max speed-up (p->inf): is 1/alpha

EXERCISE

• Determine alpha for the above example

– And thus max speed-up

• Time seq: 120 seconds

• Time par: 500 seconds

• Alpha= 120/620 = 19%

• Max speed up= 5.17

1 core

Time for SEQ

/seconds

120

Time for PAR /

seconds

500

So why 100K machines?

• A1: consider a code that spends just 1% of its

time doing non-parallelisable work.

– What is the maximum speed-up? 1/0.01 = 100

– How many cores do we need to achieve 99% of

this maximum? 99*(1-0.01) / .01 = 9801

• A2: we can live with a few seconds or minutes

of serial but want to take what took days for

the parallel part to be done in seconds or

minutes

Flavours of Scaling

• Reducing the time for a given problem by

increasing the number of cores

– strong scaling

– Amdahl's Law

• BUT we also interested in using more cores so

we can run bigger problems but in the same

time

– weak scaling

– Gustafson's Law: S'(p) = alpha + (1-alpha)*p

What is Missing?

(other than inherently serial logic part of code…)

The cost (overheads) of implementing the

parallelism

• fork (creating, particularly PRIVATE vars)

• join (synchronisation)

• locks

• comms

• load imbalance

Time to Try!

• Two exercises

• Exercise002 "func"

– To learn about replicated and work sharing

• Exercise003 "amdahl"

– To learn about effect on scaling of serial code

But of "clause"..

• … it's not quite so simple!

• Race conditions

• Data "sharing"

!$OMP PARALLEL DO

DO I=2, N ! WHERE N IS >2

TMP = F(I)

X(IND(I)) = X(IND(I-1)) * F(I)

END DO

!$OMP END PARALLEL DO

Dependencies

• OpenMP directives will do what you tell them

to

• Even if it's wrong!

!$OMP PARALLEL DO

DO I=2, 10

X(I) = X(I-1) * 5

END DO

!$OMP PARALLEL DO

i=3

x(3) = x(2)*5

i=2

x(2) = x(1)*5

Is this the "old" value of x(2)

or the value updated on

another thread?

x

SCOPE OF VARIABLES

x

X could be a scalar

or an array

(only scalar shown for

ease)

SHARED (global)

• Everybody reads the value

• Nobody updates the variable

• Only need 1 physical memory local

SHARED(x)

– "global" memory

x

x

PRIVATE (local)

• Each thread wants to update the

variable but only for its own use

• Need a physical memory location for

each thread

– Set up at the entry to the parallel

region

PRIVATE(x)

– "local" memory
– Does not carry value of x in to par reg

– Nor of local values back to master thread at end of parallel region

x

x x0 x1 x3 x2

Group Exercise: sort data clauses

! Example that needs data clauses

INTEGER:: X(100), Y(100)

READ(*,*) N, Y

!$OMP PARALLEL DEFAULT(NONE) &

!$OMP& SHARED(what does here?), PRIVATE(what goes here?)

TMP = 1.5

!$OMP DO

DO I=2, N

TMP2 = X(1) + Y(I)

Y(I) = 10.0 * Y(I)

NEWX(I) = TMP2*X(I) + TMP1*Y(I)

END DO

!$OMP DO

DO I=2, N

X(I) = NEWX(I)

END DO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

TMP:

TMP2:

I:

N:

X

Y

NEWX

! Example that needs data clauses

INTEGER:: X(100), Y(100)

READ(*,*) N, Y

!$OMP PARALLEL DEFAULT(NONE) &

!$OMP& SHARED(TMP, N, X, Y, NEWX), PRIVATE(TMP2, I)

TMP = 1.5

!$OMP DO

DO I=2, N

TMP2 = X(1) + Y(I)

Y(I) = 10.0 * Y(I)

NEWX(I) = TMP2*X(I) + TMP1*Y(I)

END DO

!$OMP DO

DO I=2, N

X(I) = NEWX(I)

END DO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

Patterns

• Reduction

– Every thread finds global max (or min) of local

data

– Every thread wants global sum (or multiple) of

local data

– QUESTION: why not global division?

Or global subtraction?

• REDUCTION operator

– Which we have already seen…

Example

• Global sum of local
!$OMP PARALLEL SHARED(X) PRIVATE(MYSUM)

MYSUM = 0.0

!$OMP DO

DO I=1, N

MYSUM = MYSUM + X(I)

END DO

! *BUT MYSUM IS LOCAL SO HOW SHARE?*

• But we've seen how better to do this

Example

• Global sum of local
!$OMP PARALLEL SHARED(X, MYSUM)

THREAD = OMP_GET_NUM_THREAD()

MYSUM(THREAD) = 0.0

!$OMP DO

DO I=1, N

MYSUM(THREAD) = MYSUM(THREAD) + X(I)

END DO

!* MYSUM ARRAY IS SHARED BUT WRITE PATTERNS MAY BE BAD

• But we've seen how better to do this

• OMP REDUCTION CLAUSE

– REDUCTION(oper : varList)

– Variable/s in varList do not need to be defined as

SHARED or PRIVATE, just in REDUCTIOn

– OMP/OS takes care of the rest

Do I care how I do Reduction?

• (Yes: order of summation may matter)

TIPS

• Think very carefully whether variable is being

updated by more than 1 thread

• Write it out on paper: unroll parallelised loops

to thread timelines

• Threads are not lock step nor can you

presume which iteration goes where or the

order they occur

• Unit test on varying number of threads,

including 1 thread, odd numbers
– Check results! Look at timings – perhaps profile too

Time to Try!

• A more substantial exercise

• Exercise004 "advection"

– To take a serial code and determine how to use

OpenMP directives yourself to parallelise

– (explain – see practicals.pptx)

TUNING OPENMP

Imperfect Parallelism

Load Imbalance

• Some threads take longer (WHY?)

• Wall clock is time for slowest thread

Challenges

• Remove the imbalance

• Make use of the "spare" cycles

2 2 3 6 9 9 11 12 13 16 13 8 9 12 13 15 16 19 14 13 19 19 18 20

7

9

9

8

7

9

8

8

13

13

15

16

15

15

18

19

16

13

13

10

5

14

15

16

How would you

share out this

work equally?

Re-balancing

• How to control how the iterations are

distributed to threads?

• SCHEDULE clause

– Controls placement of DO iterations on to threads

SCHEDULE(type, chunk)

• Default typically: SCHEDULE(static)

• Options: SCHEDULE(static, n)

SCHEDULE(dynamic) SCHEDULE(guided)

SCHEDULE(dynamic,n) SCHEDULE(guided,n)

SCHEDULE(runtime)

2 2 3 6 9 9 11 12 13 16 13 8 9 12 13 15 16 19 14 13 19 19 18 20 104, 187

54, 99, 138

SCHEDULE(static)

2 threads

3 threads

2 2 3 6 9 9 11 12 13 16 13 8 9 12 13 15 16 19 14 13 19 19 18 20

104, 187

140, 151 SCHEDULE(static,1)

SCHEDULE(static)

OPENMP UNCOVERED

Beyond scope

• Synchronisation directives

– BARRIER

– ATOMIC & CRITICAL

– SINGLE & MASTER

– LASTPRIVATE & FIRST PRIVATE

• Common Block clauses re data scope

• COLLAPSE clause: takes nested DO loops,

collapses to larger iteration space

• Dynamic mode for threads per region

