OpenMP

Michael Bane
HIGH END COMPUTE SHARED MEMORY OPENMP IN PRACTICE OPENMP FORK-JOIN

REGIONS & WORK DISTRIBUTION GOTCHYA? TOP TIPS

UPDATES

1. Threads .v. hyperthreading

Hyperthreading is physical: set by BIOS, whether the operating sees
2 (not 1) logical cores for each physical core.

Threads: lightweight processes running. Typically put one thread per
CPU core.

For x86, best to have HT turned off, and 1 thread per physical core.

For GPU, different story. Threading is good and used to mask high
cost of memory access — the GPU cores are designed specifically to
cope with lots of threads

For MIC, leave their HT turned on, and best performance may be 2 or
3 or 4 threads per physical core

OpenMP

Dr. Michael K. Bane
HIGH END COMPUTE

OPENMP IN PRACTICE

Quadrature

12 4

——0.5*[f(x)+f(y)]

10

o N ESY (o)) (o]
1 1 1 1

* Approximate integral is
sum of areas under line

my=x+h

* Each area approximated by a rectangle
* Can we calculate these in parallel?

Hands on

Quad on Archer CPU
— (rather than KNL we saw earlier)

Show serial

OMP times for 1,2,4, ...

— (login v batch)
— (ifort v ftn)

An OpenMP thread runs on a processor core

do 1=1, numberQuads
¥ = a+ (1-1)=width
y = x + width
meanHeight = @.5={func{x)+funciy))
integrand = integrand + meanHeight=width
end do

do 1=1, numberQuads
¥ = a+ (1-1)=width
y = x + width
meanHeight = B.5={func(x)+funciy))
integrand = integrand + meanHeight=width
end do

OPENMP MAIN PRINCIPLES

Recap: fork-join, parallel regions,
team of threads

Master thread — lives forever

Worker threads — short lived, in a parallel
region

Fork at start of a parallel region

— Creation of new threads do 1=1, numberliua
Yy = K+ widih
— Possible creation of new ppr ot R

end do

memory locations

Join at end of a parallel region

Can have many parallel regions (with differing
number of threads in the team)

Threads & Regions

 More than 1 par region

— Could have differing number of threads in each
par region

e Also need to think efficiency

— Coarse grained usually best
— Set-up and close/sync costs

This region has 7 threads.

omp_get_num_threads() (12

will return 7 from inside

* Threads: pa egr
— Master #0
— Workers: 1, 2, ..., S{OMP_NUM_THREADS}-1

o

OPENMP SYNTAX

OpenMP

* \We are not going to attempt to cover all the
syntax, nor the edge cases, nor all the gotchyas...

e Syntax of each & everything, with interpretation
http://openmp.org/wp/openmp-specifications/

* We will cover the key concepts (with examples),
focussed on FORTRAN

OpenMP: the three ingredients

* Directives

— Tell the compiler to create assembler for thread
creation (etc) and concerning work placement within
the team of threads

e Run time functions

— Allow running code to make run time decisions.
Typically how to distribute the work load based on
input data size and number of threads available

* Environment variables

— Control how a compiled code will run, eg set the
maximum number of threads

OpenMP Directives

1SOMP <directive> <clauses>

e <directive>is ~command

e <clauses>are “how to implement command

— Typically on scope of data and control of thread &
work placement

e Comment to non-OpenMP compliant
compilers

* Interpreted by OpenMP compliant compilers

Syntax for Directives

1SOMP <directive> <clauses>

* No whitespace within "ISOMP"

* At least one space after the sentinel

* First string on a line

* Cannot mix OMP directives and other FORTRAN
* FORTRAN, so case insensitive

* Continuation

— Line to be continued: end with &
— Continuation line: start with either ISOMP or ISOMP&

Setting up a Parallel Region

e ISOMP PARALLEL <clauses>
... code
ISOMP END PARALLEL

* Code will be replicated

— Single source code but may be different paths and
different "evaluations”

! SOMP PARALLEL
start = workSize * omp_get_thread_num() >

do jJ = start, workSize

v(J) = y(3) + func(x(3))
end do
! SOMP END PARALLEL

' At this point we will have updated
' elements 0,1,..,2 of Y

' where 7Z depends on the number of threads

Sharing the Work

* Once we have a parallel region
— Threads created

e Constructs to share work
— Divide the work over the threads
— Exist within a parallel region

e Common

— ISOMP DO Most commen! | (@S per examples)
— ISOMP SECTIONS
— ISOMP WORKSHARE

OMP DO

do 1=1, numberQuads
¥ = a + (i-1)=width
v = ®x + width

meanHeight = 0.5=(func{x)+func(y))
integrand = integrand + meanHeight=width
end do

» distributes the iterations of the following DO
loop to threads
— doesn’t create a loop
— no need to write an extra FORTRAN loop re threads

« Remember that the code worked before adding
OpenMP do no need for extra loops — we are
just describing who does the work

do 1=1, numberQuads
¥ = a + (i-1)=width
v = ®x + width

meanHeight = 0.5=(func{x)+func(y))
integrand = integrand + meanHeight=width
end do

e The "REDUCTION" is a data clause — see later

 We can optionally use NOWAIT clause at end:
ISOMP END DO NOWAIT
which removes a synchronisation and lets threads
continue with next statement without waiting for
every other statement (can be dangerous)

How much parallelism

We can control the number of threads:

Env var
export OMP_NUM THREADS=12

Directives
1SOMP PARALLEL num threads (N)

Run time library call
(effect varies where is called)

call omp_set_num_threads (N)

Use N threads for the parallel region
(best to have N<=SOMP_NUM_THREADS)

Replication .v. s

do 1=1, numberQuads
®x = a+ (1-1)=width
y = x + width
meanHeight = 0.5={func(x)+funciy))
integrand = integrand + meanHeight=width
end do

e OMP PARALLEL: creates threads
* OMP DO: up the work

 So on N threads that part
(should) go N times quicker

V.
Work Sharing

OMP PARALLEL creates threads

Everything in the parallel region is
done by every thread

So if no extra directive*
to split up the work

Then all N threads do everything so
might only go 1 times quicker

*Or alternative (programmable) method

UNLIMITED PARALLELISM

The sky is the limit?

init()

for timesteps {
update_my cell()
update globals()
output_current_state()

}
fini()

I TS T S T S T

Time for SEQ
/seconds

Time for PAR / 500 250 100 1
seconds

I P S P P S

Total /seconds

I S Y S P S

Speed-up

Speed up: How much faster on p cores than on 1 core: S =T /T,
Efficiency: How close to ideal speed-up on p cores: E; =S /p

Amdahl's Law

Alpha : serial proportion of original code
T, =alpha*T, + (1-alpha)*T,/p

S,=T,/T,

Thus S, =1/ (alpha + (1-alpha)/p)

Speed-up (and max speed-up) only dependent
on the proportion of code that is serial

Max speed-up (p->inf): is 1/alpha

EXERCISE

Determine alpha for the above example

— And thus max speed-up

Time seq: 120 seconds
Time par: 500 seconds
Alpha= 120/620 = 19%
Max speed up=5.17

Time for SEQ
/seconds

Time for PAR /
seconds

500

So why 100K machines?

* Al: consider a code that spends just 1% of its
time doing non-parallelisable work.
— What is the maximum speed-up? 1/0.01 = 100
— How many cores do we need to achieve 99% of
this maximum? 99*(1-0.01) /.01 = 9801
* A2: we can live with a few seconds or minutes
of serial but want to take what took days for

the parallel part to be done in seconds or
minutes

Flavours of Scaling

* Reducing the time for a given problem by
increasing the number of cores
— strong scaling
— Amdahl's Law

 BUT we also interested in using more cores so
we can run bigger problems but in the same
time
— weak scaling
— Gustafson's Law: S'(p) = alpha + (1-alpha)*p

What is Missing?

(other than inherently serial logic part of code...)

The cost (overheads) of implementing the
parallelism

e fork (creating, particularly PRIVATE vars)
* join (synchronisation)

* locks

* comms

* load imbalance

Time to Try!

e TWO exercises

* Exercise002 "func"
— To learn about replicated and work sharing

e Exercise003 "amdahl"
— To learn about effect on scaling of serial code

But of "clause"..

e ...it's not quite so simple!

e Race conditions
e Data "sharing"

1SOMP PARALLEL DO
DO I=2, N ! WHERE N IS >2

TMP = F(I)
X(IND(I)) = X(IND(I-1)) * F(I)
END DO

1SOMP END PARALLEL DO

Dependencies

WARNING

e OpenMP directives will do what you tell them
to

e Even ifit's wrong!

1SOMP PARALLEL DO | Ill

DO I=2, 10 ;:é) _ x(2)*5 S0 =iy
X(I) = X(I-1) * 5
END DO

|
SOMP PARALLEL DO Is this the "old" value of x(2)

or the value updated on
another thread?

SCOPE OF VARIABLES

X could be a scalar

or an array
(only scalar shown for
ease)

SHARED (global)

* Everybody reads the value
X Nobody updates the variable

* Only need 1 physical memory local

SHARED (x)

— "global” memory

PRIVATE (local)

* Each thread wants to update the
variable but only for its own use

* Need a physical memory location for
each thread
— Set up at the entry to the parallel
region
PRIVATE (x)

Iocal memory
not carry value of x in to par reg

— Nor of local values back to master thread at end of parallel regio

Group Exercise: sort data clauses

! Example that needs data clauses
INTEGER:: X(100), Y(100)

READ (*,*) N, Y

1SOMP PARALLEL DEFAULT (NONE) &

! SOMP & SHARED (what does here?), PRIVATE (what goes here?)

T™P = 1.5

1$OMP DO

DO I=2, N
™P2 = X(1) + Y(I) TMP:
Y(I) = 10.0 * Y(I) TMP2:
NEWX (I) = TMP2*X(I) + TMPl*Y (I) I:

END DO N:

1$OMP DO

DO I=2, N X
X(I) = NEWX(I) Y

END DO NEWX

1SOMP END DO NOWAIT
1SOMP END PARALLEL

! Example that needs data clauses
INTEGER:: X(100), Y(100)
READ (*,*) N, Y
1SOMP PARALLEL DEFAULT (NONE) &
1 SOMP& SHARED (TMP, N, X, Y, NEWX), PRIVATE (TMP2, I)
TMP = 1.5
1SOMP DO
DO I=2, N
TMP2 = X(1) + Y(I)
Y(I) = 10.0 * Y(I)
NEWX (I) = TMP2*X(I) + TMP1*Y (I)
END DO
1SOMP DO
DO I=2, N
X(I) = NEWX(I)
END DO
1SOMP END DO NOWAIT
1SOMP END PARALLEL

Patterns

e Reduction

— Every thread finds global max (or min) of local
data

— Every thread wants global sum (or multiple) of
local data

— QUESTION: why not global division?
Or global subtraction?

* REDUCTION operator
— Which we have already seen...

Example

 Global sum of local
1$SOMP PARALLEL SHARED (X) PRIVATE (MYSUM)
MYSUM = 0.0
1SOMP DO
DO I=1, N
MYSUM = MYSUM + X(I)

END DO
! *BUT MYSUM IS LOCAL SO HOW SHARE?*

e But we've seen how better to do this

Example

 Global sum of local

1SOMP PARALLEL SHARED (X, MYSUM)
THREAD = OMP_GET_NUM THREAD ()

MYSUM (THREAD) = 0.0
1SOMP DO
DO I=1, N
MYSUM (THREAD) = MYSUM (THREAD) + X(I)
END DO

!* MYSUM ARRAY IS SHARED BUT WRITE PATTERNS MAY BE BAD

e But we've seen how better to do this

width = (b-a)/float{numberQuads)
integrand = 0.0

do 1=1, numberQuads
x = a+ (1-1)=width
y = % + width

meanHeight = 0.5=(func(x)+func(y))
integrand = integrand + meanHeight=width
end do

write(s=, =) . integrand

* OMP REDUCTION CLAUSE

— REDUCTION(oper : varlList)

— Variable/s in varList do not need to be defined as
SHARED or PRIVATE, just in REDUCTIOn

— OMP/OS takes care of the rest

Do | care how | do Reduction?

* (Yes: order of summation may matter)

TIPS

Think very carefully whether variable is being
updated by more than 1 thread

Write it out on paper: unroll parallelised loops
to thread timelines

Threads are not lock step nor can you
presume which iteration goes where or the
order they occur

Unit test on varying number of threads,
including 1 thread, odd numbers

— Check results! Look at timings — perhaps profile too

Time to Try!

* A more substantial exercise

e Exercise004 "advection"

— To take a serial code and determine how to use
OpenMP directives yourself to parallelise

— (explain — see practicals.pptx)

TUNING OPENMP

Imperfect Parallelism

Load Imbalance
* Some threads take longer (WHY?)
e Wall clock is time for slowest thread

Challenges
 Remove the imbalance
* Make use of the "spare" cycles

o

)
[
‘| w“E‘
e ° -
i %
: oo, -
” . =
6
® °
oy -
, ~.. n P @
A R B > 0 ® b
: ° S ™
& Y & od o) * !
N J:o‘ : .E : . e .
“ho ! ¢ ete O b
v 0 °
4 RRAT I P o :
o. . : - *
& i.'w = ‘ol
o .
AR \ 5
Ak 2 Fo | *] e, . fie
4 ‘F—
AR 4 “ ‘lb :. j

o ‘
| S
' a
o[%
‘. oo, .
® * fo 4
. e . @
‘;'. M. ’ - 8 - . L))
.‘_.0 i - ©
!‘ . o, .0"o‘.‘ X
|® '.C .‘l -\' Ak .
L) ’oe O. - . s“ °
’ : .4 b Gl k\'_ % o
b N
‘s P P |o° e
Ak .T ? % b oh—.'—
'"o “ L : ® -

.1.

2 23 6 9 9111213161389 12 131516 191413191918 20

0O 00 O N 00 O OV

= R e B R R R R R R R R R R R
O U1 A 1O W WO VWO ULl oo 1 W W

How would you
share out this
work equally?

Re-balancing

e How to control how the iterations are
distributed to threads?

e SCHEDULE clause
— Controls placement of DO iterations on to threads

SCHEDULE(type, chunk)
* Default typically: SCHEDULE(static)

* Options: SCHEDULE(static, n)
SCHEDULE(dynamic) SCHEDULE(guided)
SCHEDULE(dynamic,n) SCHEDULE(guided,n)
SCHEDULE(runtime)

SCHEDULE(static)
104, 187 2 threads

54, 99, 138 3 threads

140, SCHEDULE(static,1)

104, 187 SCHEDULE(static)

OPENMP UNCOVERED

Beyond scope

Synchronisation directives

— BARRIER

— ATOMIC & CRITICAL

— SINGLE & MASTER

— LASTPRIVATE & FIRST PRIVATE

Common Block clauses re data scope

COLLAPSE clause: takes nested DO loops,
collapses to larger iteration space

Dynamic mode for threads per region

